NPS HPL Assessment # FRUITION # 9 Milford Downs, Masterton Assessment of land productive capability. 12 July 2024 Prepared for: **Tomlinson & Carruthers Surveyors Ltd** Prepared by: Angus Bews Fruition Consultant # www.fruitionhort.com angusbews@fruition.net.nz | 021 949 906 Fruition has prepared this report with customary and due care, but no warranty or liability for its contents are accepted # **Summary** The Land Use Capability (LUC) categories for the assessed area was determined to be 3E 2 and 3S 1. The main limitations of the site arise from the presence of: - 1. Poorly drained - 2. Susceptibility to drought - 3. Susceptibility to erosion The soil conditions regarding poor subsoil drainage and the risk of drought in summer periods can be remediated through installation of adequate irrigation and drainage systems. The potential risk of erosion during/post cultivation can be reduced with careful attention to weather conditions (wind) during the earthwork process. 4. Irrigation constraint There are no current consents suitable to horticultural or arable production allocated to this property. Given the need for irrigation for successful commercial horticultural production, this limitation renders the property unsuitable for commercial horticultural production. #### Conclusion The soils in the assessed area are suitable for intensive agricultural or horticultural production with the installation of irrigation and drainage. However, the combination of the lack of available water allocation and property size means that the site would not be conducive to economically sustainable commercial intensive agriculture or horticulture. # The Brief - o An assessment of the productive capacity of the land, - Identification of any particular qualities that increase or decrease the value of the land from a productive perspective. # The Land One title totalling 1.01 ha at 9 Milford Downs, Masterton was assessed for suitability for agricultural/horticultural production. Lot 5 DP 68587 Total Area: 1.01 ha # **LUC Classification** LUC Classification is interpreted as an expression of three parts recorded in combination of "Class code, Subclass modifier, and unit identifier". The LUC categories for the assessed area are 3E 2 and 3S 1: ### 3E 2 Class 3 – Land with moderate limitations for arable use, but suitable for cultivated crops, pasture or forestry. Subclass E – Erosion susceptibility, deposition or the effects of past erosion damage first limits production *Unit 2* – This unit occurs on rolling slopes with significant potential erosion after cultivation. #### <u>3S 1</u> Class 3 – Land with moderate limitations for arable use, but suitable for cultivated crops, pasture or forestry. Subclass S — Soil physical or chemical properties in the rooting zone such as shallowness, stoniness, low moisture holding capacity, low fertility, salinity, or toxicity first limits production. Unit 1 – This unit occurs on flat river terraces with periods of severe soil moisture deficiency and poor drainage. Source: LRIS – NZLRI Land Use Capability 2021 Noble, K. E. 1985: Land use capability classification of the Southern Hawke's Bay – Wairarapa Region. Water & Soil Miscellaneous Publication 74. Wellington, New Zealand, National Water and Soil Conservation Authority. 128p. # Desktop Soils Assessment Landcare's on-line soil mapping service, S-maps, was used for a desktop analysis. The main soil present are: - Claremont (4a.1): A silt textured soil. (100% - 1 ha) Figure 1 - Land Title on S-maps soil map # Soil Analysis S-Maps describes the three main different soil types present: - Claremont (4a.1) soil is of the Pallic soil order and is of loess origin. The soil profile texture is silt. - o The topsoil horizon can extend 10-20cm and has rapid permeability. - The subsoil horizon extends 15-25cm and has moderate permeability. This horizon is a weak loam. - The third horizon extends 15-35cm and has moderate permeability. This horizon is a slightly firm fine loam. - The fourth horizon extends 40-50cm and has impermeable permeability. This horizon is a firm coarse loam. - The potential rooting depth extends between 50-70cm due to low penetrable soil materials. The profile available water is moderate through the 100cm profile (93mm). The soil has a moderate clay percentage and a moderate cation exchange capacity. S-maps Pictogram (Appendix) # Assessment of Productive Capability #### Soils Most of the property has a LUC category of 3E 2 (97%), the main limitations of this category are: - 1. Susceptible to erosion - 2. Susceptible to period of drought The slope of this area is dominantly rolling between 8-15° but with some undulating slopes of 4-7°. The rest of the property has a LUC category of 3S 1 (3%), the main limitations of this category are: - 3. Poorly drained - 4. Susceptible to period of drought The slope of this area is dominant undulating between 4 and 7°. The soils are suited to multiple forms of arable and horticultural cropping. There is evidence based on the S-Maps analysis that they could sustain economically viable levels of production. A fragipan horizon (layer or dense cemented silt and/or fine sand) within the subsoils impedes permeability and leads to poor drainage, similarly this soil horizon also leads to periods of drought in summer. It is likely that the high capital investment required for horticultural growing systems could be justified considering these relatively minor limitations. The limitations above could be mitigated to some degree with the installation of irrigation and drainage alongside careful attention to water and nutrient management. There is a potential for moderate sheet, rill and wind erosion during and after cultivation. # Water The no current resource consents allocated to this property. Supplementary irrigation is considered essential for successful commercial horticultural production. ## Conclusion Considering these factors in combination means that this property in its entirety is **not suitable** for commercial agricultural or horticultural production. # Appendices Pictogram's detailing soil textures through the soil horizons. $\textit{Functional soil horizons. Soils Data reproduced with permission of Landcare Research \, \text{NZ Ltd}}$ ${\it Pictogram's \ detailing \ plant \ available \ water \ holding \ capacity \ through \ the \ soil \ horizons.}$ Functional soil horizons. Soils Data reproduced with permission of Landcare Research NZ Ltd Map detailing Land Use Capability. ${\it LUC map\ reproduced\ with\ permission\ of\ Land\ Resource\ Information\ Services\ NZ}$ # SOIL REPORT # Claremont 4a.1 Clar 4a.1 Report generated: 10-Jul-2024 from https://smap.landcareresearch.co.nz This information sheet describes the typical average properties of the specified soil to a depth of 1 metre, and should not be the primary source of data when making land use decisions on individual farms and paddocks. S-map correlates soils across New Zealand. Both the old soil name and the new correlated (soil family) name are listed below. # **Soil Classification** Soil Classification: Fragic Perch-gley Pallic Soils (PPX) Family Name: Claremont (Clar) Sibling Name: Claremont_4a.1 (Clar_4a.1) Soil profile material Stoneless soil **Profile texture** silt **Parent Material** Stones/rocks not applicable Soil material hard sandstone rock Depth class (diggability) Moderately deep (50 - 70 cm) Origin Loess # **Soil Sibling Concept** This soil belongs to the Pallic soil order of the New Zealand soil classification. Pallic Soils have pale coloured subsoils, due to low contents of iron oxides, have weak soil structure and high density in subsurface horizons. Pallic Soils tend to be dry in summer and wet in winter. It is formed in a blanket deposit of silt sized windblown materials, from hard sandstone parent material. The topsoil typically has silt texture and is stoneless. The subsoil has dominantly silt textures, with gravel content of less than 3%. The plant rooting depth is 50 - 70 (cm), due to soil material of high density and/or high penetration resistance. Generally the soil is poorly drained with very high vulnerability of water logging in non-irrigated conditions, and has moderate soil water holding capacity. Inherently these soils have a very high structural vulnerability and a moderate N leaching potential, which should be accounted for when making land management decisions. Perch-gley Pallic # About this publication - This information sheet describes the typical average properties of the specified soil. - For further information on individual soils, contact Landcare Research New Zealand Ltd: www.landcareresearch.co.nz - Advice should be sought from soil and land use experts before making decisions on individual farms and paddocks. - The information has been derived from numerous sources. It may not be complete, correct or up to date. - This information sheet is licensed by Landcare Research on an "as is" and "as available" basis and without any warranty of any kind, either express or implied. - Landcare Research shall not be liable on any legal basis (including without limitation negligence) and expressly excludes all liability for loss or damage howsoever and whenever caused to a user of this factsheet. © Landcare Research New Zealand Limited 2024. Licensed under Creative Commons Attribution - NonCommercial - No Derivative Works 3.0 New Zealand License (BY-NC-ND) ### Soil horizons #### Characteristics of functional horizons in order from top to base of profile: | Functional Horizon | Thickness | Stones | Clay* | Sand* | Permeability | |--------------------------|------------|--------|-----------|-----------|--------------| | Loamy Weak | 10 - 20 cm | 0 % | 20 - 22 % | 10 - 12 % | rapid | | Loamy Weak | 15 - 25 cm | 0 % | 20 - 22 % | 10 - 12 % | moderate | | Loamy Fine Slightly Firm | 15 - 35 cm | 0 % | 25 - 28 % | 10 - 15 % | moderate | | Loamy Coarse Firm | 40 - 50 cm | 0 % | 10 - 15 % | 10 - 15 % | impermeable | ^{*} clay and sand percent values are for the mineral fines (excludes stones). Silt = 100 - (clay + sand) Water Retention The values for the graphs above have been generated from horizon and pedotransfer data. These values have then been splined to create continuous estimates of soil water holding capacity and particle size distribution the soil profile. These curves express the particle size distribution and water retention of the soil however there may be barriers to rooting depth that are not necessarily represented in these properties directly. It is advisable to check the potential rooting depth and rooting barrier fields in the soil physical properties section on page three of this factsheet. # Claremont 4a.1 # Soil physical properties Depth class (diggability) Moderately deep (50 - 70 cm) Potential rooting depth 50 - 70 (cm) **Rooting barrier** Low penetration soil material Depth to hard rock No hard rock within 1 m Depth to soft rock No soft rock within 1 m Depth to stony layer class No significant stony layer within **Texture profile** Silt **Topsoil stoniness** Stoneless Topsoil clay range 20 - 22 % **Drainage class** Poorly drained Permeability profile Moderate over slow Depth to slowly permeable horizon 50 - 70 (cm) Permeability of slowest horizon Slow (< 4 mm/h) Aeration in root zone Very limited Profile available water (0 - 30cm or root barrier) (0 - 60cm or root barrier) (0 - 100cm or root barrier) topsoil subsoil High (56 mm) High (93 mm) Moderate (93 mm) 1.22 g/cm³ 1.42 g/cm³ # Soil chemical properties # **Topsoil P retention** Low (22%) # Soil management factors Vulnerability classes relate to soil properties only and do not take into account climate or management Soil structure integrity Structural vulnerability Very high (0.72) Contaminant management N leaching vulnerability Medium P leaching vulnerability not available yet Dry bulk density Water management Water logging vulnerability High Drought vulnerability - if not irrigated Moderate **Bypass flow** Medium # SINDI - Soil quality Indicators #### **SINDI - Soil Quality Indicators** A suite of soil quality indicators is available from http://sindi.landcareresearch.co.nz/ - Compare your soil with information from our soils databases. - Assess the intrinsic resources and biological, chemical and physical quality of your soil - See how your soil measures up against current understanding of optimal values. - Learn about the effect each indicator has on soil quality and some general management practices that could be implemented to improve soil quality. # Claremont_4a.1 ### Soil information for OVERSEER The following information can be entered in the OVERSEER® Nutrient Budget model. This information is derived from the S-map soil properties which are matched to the most appropriate OVERSEER categories. Please read the notes below for further information. ### Soil description page - 1. Select Link to S-map - 2. Under S-map sibling data enter the S-map name/ref: Clar 4a.1 ### Considerations when using Smap soil properties in OVERSEER - The soil water values are estimated using a regression model based on soil order, parent rock, soil functional horizon information (stone content, soil density class), as well as texture (field estimates of sand, silt and clay percentages). The model is based on laboratory measured water content data held in the National Soils Database and other Manaaki Whenua datasets. Most of this data comes from soils under long-term pasture and may vary from land under arable use, irrigation, etc. - Each value is an estimate of the water content of the whole soil within the target depth range or to the depth of the root barrier (if this occurs above the base of the target depth). Where soil layers contain stones, the soil water content has been decreased according to the stone content. - S-map only contains information on soils to a depth of 100 cm. The soil water estimates in the > 60 cm depth category assume that the bottom functional horizon that extends to 100 cm, continues down to a depth of 150cm. Where it is known by the user that there is an impermeable layer or non-fractured bedrock between 100 and 150 cm, this depth should be entered into OVERSEER. Where there is a change in the soil profile characteristics below 100 cm, the user should be aware that the values provided on this factsheet for the > 60 cm depth category will not reflect this change. For example, the presence of gravels at 120 cm would usually result in lower soil water estimates in the > 60 cm depth category. Note though that this assumption only impacts on a cropping block, as OVERSEER uses soil data from just the top 60 cm in pastoral blocks. - OVERSEER requires the soil water values to be non-zero integers (even though zero is a valid value below a root barrier), and the wilting point value must be less than the field capacity value which must be less than the saturation value. The S-map water content estimates supplied by the S-map web service have been rounded to integers and may be assigned minimal values to meet these OVERSEER requirements. These modifications will result in a slightly less accurate estimate of Available Water to 60 cm (labelled PAW in OVERSEER) than that provided on the first page of this factsheet, but this is not expected to lead to any significant difference in outputs from OVERSEER.